Equire LIF and keep their developmental possible in early stage of embryos. PloS One 7, e51778 (2012). 20. Zhang, S. et al. Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition. Stem Cell Rev. 11, 24?eight (2015). 21. Liu, Y. et al. Comparative gene expression signature of pig, human and mouse induced pluripotent stem cell lines reveals insight into pig pluripotency gene networks. Stem Cell Rev. 10, 162?76 (2014). 22. Ezashi, T., Telugu, B. P. Roberts, R. M. Induced pluripotent stem cells from pigs as well as other ungulate species: an option to embryonic stem cells? Reprod. Domest. Anim. 47(Suppl four), 92?7 (2012). 23. Nichols, J. Smith, A. Na e and primed pluripotent Imidazol-1-yl-acetic acid Cancer states. Cell Stem Cell 4, 487?92 (2009). 24. Weinberger, L., Ayyash, M., Novershtern, N. Hanna, J. H. Dynamic stem cell states: na e to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155?69 (2016). 25. Tesar, P. J. et al. New cell lines from mouse epiblast share defining options with human embryonic stem cells. Nature 448, 196?99 (2007). 26. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191?95 (2007). 27. Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663?75 (2013). 28. Gafni, O. et al. Derivation of novel human ground state na e pluripotent stem cells. Nature 504, 282?86 (2013). 29. Theunissen, T. W. et al. Systematic identification of culture situations for induction and maintenance of na e human pluripotency. Cell Stem Cell 15, 471?87 (2014).30. Ware, C. B. et al. Derivation of na e human embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 4484?489 (2014). 31. Ezashi, T., Yuan, Y. Roberts, R. M. Pluripotent stem cells from domesticated mammals. Annu. Rev. Anim. Biosci. four, 223?53 (2016). 32. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519?23 (2008). 33. Brevini, T., Pennarossa, G., Maffei, S. Gandolfi, F. Pluripotency network in porcine embryos and derived cell lines. Reprod. Domest. Anim. 47(Suppl four), 86?1 (2012). 34. Yang, F., Wang, N., Wang, Y., Yu, T. Wang, H. Activin-SMAD signaling is required for upkeep of porcine iPS cell self-renewal through upregulation of NANOG and OCT4 expression. J. Cell. Physiol. 232, 2253?262 (2017). 35. Esteban, M. A. et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284, 17634?7640 (2009). 36. Ovchinnikov, D. A. et al. Transgenic human ES and iPS reporter cell lines for identification and collection of pluripotent stem cells in vitro. Stem Cell Res. 13, 251?61 (2014). 37. Hotta, A. et al. Isolation of human iPS cells applying EOS lentiviral vectors to Sunset Yellow FCF Epigenetics choose for pluripotency. Nat. Solutions 6, 370?76 (2009). 38. Chen, H. et al. Erk signaling is indispensable for genomic stability and selfrenewal of mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 112, E5936 5943 (2015). 39. Ma, X., Chen, H. Chen, L. A dual role of Erk signaling in embryonic stem cells. Exp. Hematol. 44, 151?56 (2016). 40. Xue, B. et al. Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PloS 1 11, e0151737 (2016). 41. Brambrink, T. et al. Sequential expression of pluripotency markers for the duration of direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151?59 (2008). 42.